The 3D spatial configuration of paracyclophanes lowers the activation energy for alkoxyamine to afford stabilized radicals. The study finds that these paracyclophane-modified radicals promote efficient homolysis with reduced activation energies compared to traditional structures. This family of new compounds is able to initiate nitroxide-mediated polymerization and also exhibits antiproliferative activity against cancer cell lines.
Efforts to understand radical stability have led to considerable progress in radical chemistry. In this article, we investigated a novel approach to enhancing the radical stability of carbon-centered radicals through space electron delocalization within [2,2]-paracyclophanes. Alkoxyamines possessing a paracyclophane scaffold exploit face-to-face pi,pi-interactions between the aromatic rings to effectively lower bond dissociation energy (BDE) for NO-C bond homolysis. Electron spin resonance (ESR) experiments and computational modeling have confirmed a better stability compared to the analogues without the paracyclophane core. Theoretical analyses further elucidate the role of through-space electron communication in enhancing radical stability.
This study highlights promising applications in fields such as organic synthesis, material science, and drug design. By achieving a low BDE for homolysis, the alkoxyamines efficiently release radicals, enabling successful application in nitroxide-mediated polymerization (NMP) of styrene, which provides high control over polymer architecture. Additionally, preliminary anti-proliferative assays reveal that the alkoxyamines exhibit promising anti-cancer activities against lung, breast, and prostate cells, which is correlated to their ability to release radicals upon homolysis.